產品名稱: 石英晶體微天平/石英晶振微量天平 產品貨號: wi98245 產 地: 美國SRS |
石英晶體微天平測量表面或附近發生的質量和黏度變化過程。
儀器讀取5MHz/AT切割石英晶體的共振頻率和電阻。共振頻率變化與沉積于石英晶體表面的物質質量成線性關系。共振時的電阻隨與表面接觸物質(膜或液體)的黏/彈性而變化。
作為一種稱重儀器,QCM200/100可以測量的質量范圍從微克到小于一納克。檢測極限可以響應到原子亞單層。
構象變化的觀察,比如相轉換、膨脹和交聯可以輕易實現。
特殊的重負載設計(zui大5 kΩ),使得儀器在含量大于88%(重量比)的甘油水溶液中仍能保持振蕩狀態。因此成為研究損耗膜和高黏度液體的理想工具。
QCM200高靈敏度石英晶體微天平,可單獨使用,也可與任何型號的ivium儀器連接,構成“電化學石英晶體微天平-EQCM”
主要參數:
* 晶振頻率:5MHz;
* 頻率分辨率:0.01Hz;
* 門時間:0.1秒、1秒、10秒;
* 質量分辨率:0.177ng/cm2;
* 電阻范圍:0~5000 Ohm;
標準配置:鉻/金晶體電極3個,控制器1個、振蕩器1個、石英固定探頭1個、軟件一個
Frequency Measurement
Display resolution
0.01 Hz (10 second gate)
0.1 Hz (1 second gate)
1.0 Hz (0.1 second gate)
Gate time
0.1 s, 1 s, 10 s, user-selectable
Int. timebase stability
<2 × 10–9 Allan Variance (typ.)
Int. timebase accuracy ±1.5 ppm
Analog output
?f output
±10 V full scale (20-bit)
Ranges
±200 kHz, ±100 kHz, ±50 kHz,
±20 kHz, ±10 kHz, ±5 kHz, ±2 kHz
Frequency output
Frequency
5 MHz (nominal)
Level
TTL (square wave)
Source impedance 50 Ω
Ext. timebase input
Frequency
10 MHz
Level
1 Vpp (nominal)
Resistance Measurement
Resistance display
Range
0 to 5000 Ω
Resolution
5 digits:
0.001 Ω for R < 100 Ω
0.01 Ω for 100 Ω ≤ R < 1000 Ω
0.1 Ω for 1000 Ω ≤ R < 5000 Ω
Conductance output (Vc)
Resistance
R = 10,000 × (10–Vc/5) – 75 Ω
Resistance range
0 to 5000 Ω
Voltage level
0 to 10.625 VDC, log scale
Impedance
1 kΩ
Capacitance Cancellation
Range
10 pF to 40 pF (20 pF nominal)
Limit
0.01 pF
Quartz Crystals (polished)
Frequency
5 MHz, AT-cut, plano-plano
Diameter
1 inch
Electrodes
Cr/Au (Ti/Au, Ti/Pt, In Sn oxide opt.)
Physical
Analog connectors
BNC
Interface
RS-232, 9600 baud
Crystal holder
Material
Holder: Kynar®, O-ring: Viton®
Cable
Cat-5, 3 ft.
Dimensions, weight
10.6" × 2" × 7" (WHD), 2 lbs.
Operating temperature 0 °C to 40 °C
Power
15 W, 100/120/220/240 VAC,
50/60 Hz
Warranty
One year parts and labor on defects
in materials and workmanship
Ordering Information
QCM200
Controller, oscillator, 3 crystals,
holder and software
O100FC
Axial flow cell
O100RXO
Replacement oscillator electronics
O100RH
Replacement crystal holder
O100CCB
Crystal cleaning basket
O100RX1 Chrome/gold crystals (qty. 10) 鈦/金晶體
O100RX3 Titanium/gold crystals (qty. 10) 鉻/金晶體
O100RX4 Titanium/platinum crystals (qty. 10) 鈦/鉑晶體
英文介紹:
Features
QCM200 Quartz Crystal Microbalance
The QCM200 Quartz Crystal Microbalance measures mass and viscosity in processes occurring at or near surfaces, or within thin films. This system includes a controller, crystal oscillator electronics, crystal holder, three quartz crystals, and Windows / Mac software.
The instrument reads the resonant frequency and resistance of a 5 MHz, AT-cut quartz crystal. The resonant frequency changes as a linear function of the mass of material deposited on the crystal surface. The resistance at resonance changes with the viscosity / elasticity of the material (film or liquid) in contact with the crystal surface.
As a gravimetric instrument, the QCM200 can measure mass ranging from micrograms to fractions of a nanogram. Detection limits correspond to submonolayers of atoms. Observations of conformational changes, such as phase transitions, swelling, and cross-linking, can easily be made.
Specifically designed to handle heavy loads (up to 5 kΩ), the instruments will maintain oscillation in aqueous solutions containing over 88 % glycerol (w/w %). It is ideal for studies involving lossy films and highly viscous liquids.
Self-Assembled Monolayer
BSA Adsorption to Gold
The QCM200 is a stand-alone instrument with a built-in frequency counter and resistance meter. Series resonance frequency and resistance are measured and displayed, and there is an analog output proportional to frequency which can be used to interface with a potentiostat. The QCM200 can be operated from the front panel or a PC using the RS-232 interface. Windows and MacIntosh software is provided for real-time data acquisition, display, analysis and storage. Both frequency and resistance trends can be viewed. User-tags are provided to time-stamp important events.
The stability and accuracy of the QCM200 are ideal for most experiments. For special applications requiring optimum long-term frequency stability, a precision timebase, such as the FS725 Rubidium Frequency Standard, can be connected to the external 10 MHz input.
Immunosensor - Antigen-Antibody Interaction
QCM Electronics
A unique automatic gain control circuit provides the quartz crystal with the required signal amplitude to overcome viscoelastic losses and achieve series resonance. It also monitors the energy dissipated by the sensor, which is used to determine the series resistance of the crystal. The controller provides power to the crystal oscillator electronics, and includes a potentiometer for canceling shunt capacitance. Proper capacitance cancellation is required to assure true series resonance operation of the crystal oscillator, and to eliminate frequency and resistance errors.
In the QCM200, the digital controller also contains a frequency counter with 0.01 Hz resolution for accurate frequency measurements, and a resistance meter with 5 digits of resolution covering a range of 0 to 5000 Ω.
Crystal Holder with
Flow Cell
Crystals, Holder and Flow Cell
The QCM200 uses a 5 MHz, 1" diameter, AT-cut quartz crystal wafer with circular electrodes on both sides. Crystals are available in a variety of materials. The crystal holder is a rugged, compact, easy to use fixture. The holder and all crystals may be used in liquid or gas environments.
An optional axial flow cell adapter attaches to the standard crystal holder. This provides an easy way of interfacing the QCM to a flow injection analysis system.
EQCM
EQCM - Frequency Measurement
For EQCM applications, an analog output proportional to frequency shift may be directly connected to a potentiostat or galvanostat. Only the front-surface electrode of the crystal is exposed to the solution. This electrode is also transformer isolated, as required for EQCM operation.
The figure below illustrates a typical EQCM experiment. The frequency analog output of the QCM controller is connected to the potentiostat A/D input. The potentiostat digitizes the voltage, and it's software displays relative frequency changes synchronous with the electrochemical data. The versatile QCM200 can be easily integrated into any custom 5 MHz crystal based EQCM setup.
In the Lab
The QCM200 is a valuable research tools for applications ranging from pure surface science to biochemistry. Quartz crystals can be pre-coated with any thin film material including organic polymers, hydrogels, composites, ceramics, biomolecules, bacteria and living cells. This provides unlimited potential for the development of novel gas and biological sensors.
The quartz crystal microbalance is an essential addition to any biological laboratory. The data from a QCM perfectly complements that obtained from other techniques, such as surface plasmon resonance (SPR) and atomic force microscopy (AFM), aiding in the analysis of complex biological interactions.
QCM200 Data
Acquisition Software
QCM200 Software
A Windows/Mac software program is included to facilitate remote operation and simplify data acquisition.
Applications
Immunosensors
Sorption sensors
Moisture analyzers
Particulate monitors
Contamination monitors
Electrovalency measurements
Hydrogen absorption on metal films
Bubble formation
Redox and conductive polymer research
Double-layer characterization
Corrosion studies
Surface oxidation
DNA and RNA hybridization studies
Antigen-antibody reactions
Protein adsorption
Detection of virus capsids, bacteria, mammalian cells
Biofouling and antifouling
Biomembranes and biomaterials
Protein-protein interactions
Self-assembled monolayers (SAMs)
Molecularly imprinted polymers (MIPs)
Langmuir/Langmuir-Blodgett films
Laser ablation, desorption and breakdown studies
MEMS nanomaterials
Inligent biomaterials.
Specifications:
Frequency Measurement
Frequency display
Resolution 0.01 Hz (10 second gate)
0.1 Hz (1 second gate)
1.0 Hz (0.1 second gate)
Gate time 0.1 s, 1 s, 10 s, user-selectable
Measurement (using internal timebase)
Stability <4 × 10-9 Allan Variance (typ.)
Accuracy ±1.5 ppm
Analog output
Δf output ±10 V full scale (20-bit)
Ranges ±200 kHz, ±100 kHz, ±50 kHz,
±20 kHz, ±10 kHz, ±5 kHz, ±2 kHz
Frequency output
Frequency 5 MHz (nominal)
Level TTL (square wave)
Source impedance 50 Ω
Ext. timebase input
Frequency 10 MHz
Level 1 Vpp (nominal)
Resistance Measurement
Resistance display
Range 0 to 5000 Ω
Resolution 5 digits:
0.001 Ω for R < 100 Ω
0.01 Ω for 100 Ω ≤ R < 1000 Ω
0.1 Ω for 1000 Ω ≤ R < 5000 Ω
Conductance output (Vc)
Resistance R = 10,000 x (10-Vc/5) - 75 Ω
Resistance range 0 to 5000 Ω
Voltage level 0 to 10.625 VDC, log scale
Impedance 1 kΩ
Capacitance Cancellation
Range 10 pF to 40 pF (20 pF nominal)
Limit 0.01 pF
Physical
Analog connectors BNC
Interface RS-232, 9600 baud
Dimensions 10.625" × 2" × 7" (WHL)
Crystal holder
Material Holder: Kynar®, O-ring: Viton®
Cable type, length Cat-5, 3 ft.
Dimensions, weight 10.6" × 2" × 7" (WHL), 2 lbs.
Operating temperature 0 °C to 40 °C
Power 15 W, 100/120/220/240 VAC, 50/60 Hz
Quartz Crystals (polished)
Frequency 5 MHz, AT-cut, plano-plano
Diameter 1 inch
Electrodes Cr/Au (Ti/Au, Ti/Pt opt.)