中心傳動濃縮機分類
耙式濃縮機通常可分為周邊傳動式和傳動式兩大類。濃縮機工作時物料由給料溜槽把煤泥水給入受料筒,煤泥水由受料筒向四周輻射,煤泥水中的固體顆粒逐漸濃縮沉降到底部,并由緩慢的刮板刮入池底的圓錐形卸料斗中,圓錐形卸料斗的傾角一般為6°-12°,再用砂泵出。池體上部周邊設環形溢流槽,澄清水越過溢流堰由環形溢流槽出。
耙式濃縮機工作時依靠礦粒的自由沉降分層,且固體顆粒的沉降方向與澄清水上升的方向是相反的,煤泥水的出口水流速度快,些煤泥水來不及沉淀,就從出水口出;同時,下部已沉降的顆粒在上升水流的擾動下會再次浮起,混入溢流。這兩種情況均使得溢流水水質變差,若溢流水進入到循環水系統,將給煤炭分選帶來不利。因此,近年來該種濃縮機經過升級改造正逐漸被強效濃縮機取代。
斜管式濃縮機的點及現狀
斜管濃縮機包括上部箱體和下部錐體。上部箱體內斜置的斜管組群,斜管組群由若干個相互獨立的斜管單元構成。設置斜管的方式不僅大幅度增加了效沉淀面積,降低了雷諾數(Re),提高了弗羅德數(Fr),增加了水流的穩定性,提高了容積利用系數,同時可縮短沉降距離,提高沉降效率。一般認為,斜管濃縮機的沉降效率為普通濃縮機的4-5倍。
斜管濃縮機工作時,煤泥水從入料槽均勻進入濃縮機,通過斜管時沉降,結成大顆粒的煤泥依靠自身重力快速沉降到濃縮池底部,煤泥由泵出,澄清水由上部出。目前,斜管濃縮機是中小型選煤采用的煤泥水處理設備。實踐表明,斜管濃縮機處理量遠遠大于同等面積、同等深度下普通濃縮機的處理量,可以在大型選煤推廣。
深錐濃縮機的點及現狀
深錐濃縮機的沉降原理與耙式濃縮機相似。其結構特點是池深尺寸大于池的直徑尺寸,整體呈立式桶錐形。與耙式濃縮機相比,具溢流澄清、底流濃(可達70%)、、處理能力大等優點。深錐濃縮機主要由機體和攪拌裝置組成。
深錐濃縮機工作時,一般要加絮凝劑,礦漿顆粒在重力下開始沉降,并在攪拌器攪拌下絮凝,大的、海綿狀凝聚顆粒擠壓在一起,緊密結合促使水逸出。為保持穩定工作狀態,深錐濃縮機設和調節裝置,對絮凝劑的添加量、給料量以及料量進行控制。試驗證明,論在減少澄清面積,還是在提高底流濃度方面,深錐濃縮機均優于耙式濃縮機。
中心傳動濃縮機分類
液壓雙驅動強效濃縮機
該濃縮機使用液壓馬達通過齒輪驅動帶外圈的回轉支承,從而驅動傳動軸使耙架旋轉。回轉支承內圈使用高強度的螺栓固定在傳動箱體內的軸承座上,所以通常因扭矩過大而產生偏離攪拌的現象不會出現,這種雙驅傳動方式比蝸輪副傳動降低了使用成本及過程中的故障率。主傳動齒輪和回轉支承材質均采用軸承鋼,質量。由于采用液壓雙驅動,較易實現驅動同步,當濃縮機底部沉積的物料增厚,或是底流濃度增大時,耙架的工作阻力矩也隨之增大、液壓驅動的油路油壓進而也會增大。 液壓提耙裝置是通過液壓傳感器來控制刮泥耙的升降,電控同時傳出聲光信號,使提耙信號的提取更為準確、可靠。該濃縮機將混合液直接給入到濃縮機壓縮區,將沉降與深層過濾相結合,在池的內部形成濾床層,后續給入的混合液中未絮凝的細小顆粒隨著水流上升,途徑濾床層時與濾床層的顆粒碰撞,其中顆粒的上升動能被損耗,與其他細小顆粒結合在一起在重力下沉降,即外某些漿中所謂的“毯式沉降”,從而將固體顆粒與液體分離。
當深錐濃縮機的實際單位量提高時,深錐濃縮機溢流中固體含量大,不宜作循環水使用。實踐表明,當添加絮凝劑時,即使處理量為2.5-5m3/(m2.h),底流固體含量也在200-800g/L的范圍內變化。煤泥水進入濃縮機前預先脫。若煤泥水中含量較大,物料進入濃縮機后由于流體的干擾以及物料的相互碰撞,使礦漿中的空集聚出。部分泡在出過程中將附著于礦漿中的小顆粒尤其是疏水礦粒表面,帶著礦粒上浮。上浮的泡對已形成的濃縮層一定的擾動,不利于礦粒的沉降。預先可大幅降低泡對煤泥水濃縮的。
2深部減速給料
煤泥水進入給料筒后,在給料筒中設擋板或其他減速裝置,使礦漿流速降低。同時,給料筒向下延伸,采用深部給料。深部給料可大大縮短礦粒的沉降距離,已經形成的大而密實的絮團快速短距離沉降并形成連續而又穩定致密的絮團過濾層,未絮凝的顆粒隨上升水流運動時將受到阻滯。深部給料利于礦粒沉降以及溢流水的澄清。
3增大池深與坡度
煤泥水處理用強效濃縮機采用較高的池深,不僅增加礦漿的濃縮時間,同時可提高池深靜壓。同時,增大池底坡度,一般為8°-16°,以便于礦漿向集中。
4傳動方式可選
強效濃縮機的傳動方式兩種,分別為傳動和周邊傳動。傳動的優點在于當過載時可實現自動提耙,過載消除后,又可以自動復位,,便于控制,但是傳動的驅動裝置較復雜,受力不如周邊傳動效果好。周邊傳動的整個傳動系統簡單、可靠、低,但是周邊傳動系統需要足夠的摩擦力,易出現打滑。需采取措施防止打滑。在中,應根據實際情況決定使用哪種傳動方式。
5其他方面
在中強效濃縮機往往還配備絮凝劑配制系統、自動添加系統等,選用何種加式,要根據狀況確定。