IC厭氧反應器
厭氧反應器中時會產生大量泡沫,泡沫呈半液半固狀,嚴重時可充滿氣相空間并帶入沼氣管道,導致沼氣系統的運行困難。
產生泡沫的主要原因是厭氧系統運行不穩定,因為泡沫主要是由于CO2產量太大形成的,當反應器內溫度波動或負荷發生突變等情況發生時,均可導致系統運行的不穩定和CO2的產量增加,進而導致泡沫的產生。如果將運行不穩定因素排除,泡沫現象一般也會隨之消失。在厭氧污泥培養初期,由于CO2產量大而甲烷產量少,也會出現泡沫,隨著甲烷菌的培養成熟,CO2產量減少,泡沫一般也會逐漸消失。進水中含蛋白質是產生泡沫的一個原因,而微生物本身新陳代謝過程中產生的一些中間產物也會降水的表面張力而生成氣泡。厭氧生物處理過程中大量產氣會產生類似好氧處理的曝氣而形成氣泡問題,負荷突然升高所帶來的產氣量突然增加也可能出現泡沫問題。
碳酸鈣(CaCO3)沉淀:處理廢水鈣含量高或利用石灰補充堿度,都會增加產生碳酸鈣沉淀的可能性。高濃度的碳酸氫鹽和磷酸鹽都利于鈣的沉淀。
鳥糞石(MgNH4PO4)沉淀:進水中含較高濃度的溶解性正磷酸鹽、氨氮和 鎂離子時,就會生成鳥糞石沉淀。厭氧處理系統鳥糞石沉淀主要在管道彎頭、水泵入口和二沉池進出口等處出現。
永州市IC厭氧反應器
UASB與IC在運行上大的差別表現在方面,IC可以通過內循環自動稀釋進水,效了*反應室的進水濃度的穩定性。其次是它僅需要較短的停留時間,對可生化性好的廢水的確是特點。大同意因為IC,,容積負荷高,投資省等許多優于UASB的特點,是否就應該因此而放棄再選用UASB了呢?
IC缺特點尤其在污水可生化性不是太好的情況下,由于水力停留時間比較短去除率遠沒UASB高,增加了耗氧的負擔。另外,IC由于氣體內循環,別是對進水水質不太穩定的,導致IC出水水量不穩定,出水水質也相對不穩定,時可能還會出現短暫不出水現象,對后序處理工藝是影響的。UASB比IC突出特點就是去除率高,出水水質相對穩定。但IC特點還是很多的,別是對于高SS進水,比UASB明顯優點,由于IC上升流速很大,SS不會在反應器內大量積累,污泥可以保持較高活性。對于毒廢水也是如此!
IC運行溫度的設計完和UASB一樣,在調試運行上和UASB區別不大,只是在剛進水調試時盡可能采用水力負荷高些,然后逐步交互提升水力、機負荷,盡可能在負荷提升過程中*反應室上升流速大于10m/小時,但大水力負荷應控制在20m/小時以下,這樣即*反應室污泥床的傳質效果,也避免污泥流失.冬季進水管道及反應器要保溫,因為厭氧菌對溫度波動敏感,對負荷波動適應要相對好的多.其實IC的調試比UASB要好調的多,能調試好UASB的,應該調試好IC沒太大問題.不是因為上升流速大,會不好控制而延長調試周期.IC它對進水水質的要求僅是相對穩定就行,它要求高的上升流速僅是滿足*反應室污泥床處于膨化狀態,加大傳質效果,IC的高度較高,你不必太擔心會污泥流失,因為內部它兩層三相分離,更何況*反應室產氣量較大,絕大部分沼氣被*反應室分離收集提升到部的氣水分離氣進行氣與泥水的分離.二反應室氣量少泥水更易分離沉降.若接種顆粒污泥基本一個月便可達到設計負荷是沒問題的,絮狀污泥可能需三到五個月.
IC厭氧反應器是厭氧反應器,即內循環厭氧反應器,相似由2層UASB反應器串聯而成,用于機高濃度廢水,如,玉米淀粉廢水、檸檬酸廢水、啤酒廢水、土豆廢水、酒精廢水。
IC 反應器當前在造紙行業較多的是用各類廢紙作原料的造紙企業,處理的括實現一般的,通過治理后的,從而達到節水和的雙重。
IC厭氧反應器水封罐主要由杯形罐體和進、出水口組成,其征在于 園底杯形罐的罐壁上部設相對的進、出水口,其進水口的水 平位置略高于出水口;進水口處裝活動式閥板,該閥板與進 水口的接觸面上設密封墊;下端為弧形的隔板從罐蓋的 扁孔垂直插入罐內至下部。
IC厭氧反應器的水封罐可以隔絕空氣,可以維持厭氧反應器的壓力,可以起阻火器的,還可以一定的沼氣凈化效果。
IC厭氧反應器水封罐工作原理如下:密閉罐中原油沉降分離后的含硫化氫天然氣通過水封罐管道進入水封罐的底部,通過底部篩管分散氣流后進入水域空間,含硫化氫天然氣從水域底部上升后聚集在水封罐的液體上部空間,當氣體不斷由液體中分離出來,在上部空間聚集形成一定壓力后,由水封罐部出口管線排出燃燒。當發生回火時,水域成為含硫化氫天然氣流程的隔斷部分,能夠效的保護罐,同時天然氣通過水域空間時,一部分凝液被降溫分離,在水域上部形成凝析液層,減緩了阻火器的堵塞情況。
特點
IC 反應器的構造及其工作原理決定了其在控制厭氧處理方面比其它反應器更具優點。
(1)容積負荷高:IC反應器內污泥濃,微生物量大,且存在內循環,傳質,進水機負荷可過普通厭氧反應器的3倍以上。
(2)和占地面積:IC 反應器容積負荷率高出普通UASB 反應器3倍左右,其體積相當于普通反應器的1/4—1/3 左右,大大降了反應器的基建投資;而且IC反應器高徑比很大(一般為4—8),所以占地面積少。
(3):處理濃度廢水(COD=2000—3000mg/L)時,反應器內循環流量可達進水量的2—3 倍;處理高濃度廢水(COD=10000—15000mg/L)時,內循環流量可達進水量的10—20倍。大量的循環水和進水充分混合,使原水中的害物質得到充分稀釋,大大降了毒物對厭氧消化過程的影響。
(4)抗溫:溫度對厭氧消化的影響主要是對消化速率的影響。IC反應器由于含大量的微生物,溫度對厭氧消化的影響變得不再突出和嚴重。通常IC反應器厭氧消化可在常溫條件(20—25 ℃)下進行,這樣減少了消化保溫的困難,節省了能量。
(5)具緩沖pH值的能力:內循環流量相當于1 厭氧區的出水回流,可利用COD轉化的堿度,對pH值起緩沖,使反應器內pH值保持好的狀態,同時還可減少進水的投堿量。
(6)內部自動循環,不必外加動力:普通厭氧反應器的回流是通過外部加壓實現的,而IC 反應器以自身產生的沼氣作為提升的動力來實現混合液內循環,不必設泵強制循環,節省了動力消耗。
(7)性好:利用二級UASB串聯分級厭氧處理,可以補償厭氧過程中K s高產生的不利影響。Van Lier在1994年證明,反應器分級會降出水VFA濃度,延長生物停留時間,使反應進行穩定。
(8)啟動周期短:IC反應器內污泥活性高,生物增殖快,為反應器快速啟動提供利條件。IC反應器啟動周期一般為1~2個月,而普通UASB啟動周期長達4~6個月。
(9)沼氣利用值高:反應器產生的生物氣純,CH4為70%~80%,CO2為20%~30%,其它機物為1%~5%,可作為燃料加以利用
工作原理
它相似由2層UASB反應器串聯而成。按功能劃分,反應器由下而上共分為5個區:混合區、1厭氧區、2厭氧區、沉淀區和氣液分離區。
混合區:反應器底部進水、顆粒污泥和氣液分離區回流的泥水混合物效地在此區混合。
1厭氧區:混合區形成的泥水混合物進入該區,在高濃度污泥下,大部分機物轉化為沼氣。混合液上升流和沼氣的劇烈擾動使該反應區內污泥呈膨脹和流化狀態,加強了泥水表面接觸,污泥由此而保持著高的活性。隨著沼氣產量的增多,一部分泥水混合物被沼氣提升至部的氣液分離區。
氣液分離區:被提升的混合物中的沼氣在此與泥水分離并導出處理系統,泥水混合物則沿著回流管返回到下端的混合區,與反應器底部的污泥和進水充分混合,實現了混合液的內部循環。
2厭氧區:經1厭氧區處理后的廢水,除一部分被沼氣提升外,其余的都通過三相分離器進入2厭氧區。該區污泥濃度較,且廢水中大部分機物已在1厭氧區被降解,因此沼氣產生量較少。沼氣通過沼氣管導入氣液分離區,對2厭氧區的擾動很小,這為污泥的停留提供了利條件。
沉淀區:2厭氧區的泥水混合物在沉淀區進行固液分離,上清液由出水管排走,沉淀的顆粒污泥返回2厭氧區污泥床。從IC反應器工作原理中可見,反應器通過2層三相分離器來實現SRT>HRT,獲得高污泥濃度;通過大量沼氣和內循環的劇烈擾動,使泥水充分接觸,獲得良好的傳質效果。
厭氧反應四個階段
一般來說,廢水中復雜機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子機物由于其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中的機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,淀粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解后的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。
(2)酸化階段:上述的小分子機物進入到細胞體內轉化成更為簡單的化合物并被分配到 細胞外,這一階段的主要產物為揮發性脂肪酸(VFA),同時還部分的醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等產物產生。
(3)產乙酸階段:在此階段,上一步的產物進一步被轉化成乙酸、碳酸、氫氣以及新的細胞物質。
(4)產甲烷階段:在這一階段,乙酸、氫氣、碳酸、甲酸和甲醇都被轉化成甲烷、二氧化碳和新的細胞物質。這一階段也是整個厭氧過程較為重要的階段和整個厭氧反應過程的限速階段。
IC厭氧反應器
再上述四個階段中,人認為二個階段和三個階段可以分為一個階段,在這兩個階段的反應是在同一類細菌體類完成的。前三個階段的反應速度很快,如果用莫諾方程來模擬前三個階段的反應速率的話,Ks(半速率常數)可以在50mg/l以下,μ可以達到5KgCOD/KgMLSS.d。而四個反應階段通常很慢,同時也是較為重要的反應過程,在前面幾個階段中,廢水的中污染物質只是形態上發生變化,COD幾乎沒去除,只是在四個階段中污染物質變成甲烷等氣體,使廢水中COD大幅度下降。同時在四個階段產生大量的堿度這與前三個階段產生的機酸相平衡,維持廢水中的PH穩定,反應的連續進行。
水解反應
水解可定義為復雜的非溶解性的聚合物被轉化成簡單的溶解性單體和二聚體的過程。水解反應針對不同的廢水類型差別很大,這要取決于胞外酶能否效的接觸到底物。因此,大的顆粒比小顆粒底物要難降解很多,比如造紙廢水、印染廢水和制藥廢水的木質素、大分子纖維素就很難水解。
水解速度的可由以下動力學方程加以描述:
ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/l);
ρo———非溶解性底物的初始濃度(g/l);
Kh——水解常數(d-1);
T——停留時間(d)。
一般來說,影響Kh的因素很多,很難確定一個定的方程來求解Kh,但我們可以根據一些定條件的Kh,反推導出水解反應器的容積和非常好的反應條件。在實際工程實施中,條件的話,應針對要處理的廢水作一些Kh的測試工作。通過對外一些報道的研究,提出在溫下水解對脂肪和蛋白質的降解速率非常慢,這個時候,可以不考慮厭氧處理方式。對于生活污水來說,在溫度15的情況下,Kh=0.2左右。但在水解階段我們不需要過多的COD去除效果,而且在一個反應器中你很難嚴格的把厭氧反應的幾個階段區分開來,一旦停留時間過長,對工程的性就不太。如果就單獨的水解反應針對生活污水來說,COD可以控制到0.1的去除效果就可以了。把這些參數和給定的條件代入到水解動力學方程中,可以得到停留水解停留時間:T=13.44h
這對于水解和后續階段處于一個反應器中厭氧處理單元來說是一個很短的時間,在實際工程中也完可以實現。如果條件的地方我們可以適當提高廢水的反應溫度,這樣反應時間還會大大縮短。而且一般對于城市污水來說,長的排水管網和廢水中本生的生物性,所以當廢水流到廢水處理場時,這個過程也在很大程度上完成,到目前為止還沒看到關于水解作為生活污水厭氧反應的限速報道。