玻璃鋼無動力污水處理裝置
支持貼牌訂制,一件代發,廠家聯系電話:152 崔經理
膜分離技術的原理:反滲透的基本原理
采用理想半透膜將純水與鹽水隔開時,理想半透膜僅允許水通過、不允許鹽通過時,膜純水一側的水便會自動通過半透膜流入鹽水一側,此種現象即為滲透。如果在膜的鹽水一側施加一定的壓力,水的自發流動就會因為受到抑制而減慢,當施加的壓力達到某一數值時,水通過膜的凈流量為零,此種壓力即為滲透壓力。當施加在膜鹽水一側的壓力不低于滲透壓力時,水的流向便會逆轉,此情況下,鹽水中的水將會流向純水一側,此過程即為水的反滲透(RO)處理的基本原理。
在好氧系統微生物處理的過程中主要的影響因素大致都有溫度、PH、營養物、供氧、毒物和有機物等等。
溫度的影響
根據微生物生長較適合的溫度,細菌也可以分為三類,低溫、中溫、高溫三類。低溫中的微生物生長溫度是5~10℃,中溫中的微生物生長溫度是20~40℃,高溫中的微生物生長溫度是50~55℃。在廢水好氧系統中微生物處理主要是在15~35℃的條件下運行的,若是溫度要是低于10攝氏度或是高于40攝氏度,去除BOD的效率大大降低,一般都是運行在20~30℃中效果是的,并且若是溫度增加,微生物的活動能力就可以增加一倍左右。
膜分離技術的定義:所謂膜分離技術,即為在分子水平上,不同粒徑分子的混合物在通過半透膜時,選擇性分離的技術,半透膜又可稱為分離膜或是濾膜,膜壁上布滿了小孔,依據小孔的實際大小,可將其分為微濾膜(MF)、超濾膜(UF)、納濾膜(NF)、反滲透膜(RO)等,膜分離操作通常采用錯流過濾的方式進行。同時,將膜分離與蒸發、吸附、萃取、化學反應、生物技術等進行有機的結合,還可形成膜蒸餾、膜分相、液膜、膜萃取、膜生物反應器等一系列新型膜分離技術。
膜分離技術的特點:①分離效果良好。通常情況下,膜分離可對納米級的物質進行分離,并且還可有效分離水中存在的消毒副產物、有機物與細菌、病毒等微生物。②分離能耗低。大多數情況下,在膜分離過程中,往往不會發生相變,節省了大量的能量損耗。同時,膜分離過程大多在常溫環境下進行,需要加熱或者是冷卻的能量損耗極少,以反滲透法為例,其與其他分離法的能耗情況比較如表1所示。③操作簡便。大部分膜分離設備均安裝了中控系統,能夠實現一鍵操作,快捷便利,一般不需要維護,安全可靠。④成本低廉。膜分離過程通常不需要添加藥劑,在一定程度上降低了分離成本,且還能夠避免增投藥物產生的二次污染問題。
好氧系統中主要的微生物
在好氧生物處理的系統中的微生物主要就是細菌、真菌、病毒、原生物等等組成。細菌就是好氧微生物系統中主要的成員。占微生物總數的90%。細菌主要就是以菌膠團的形式生存的,菌膠團中的微生物相互作用,相互影響,形成一個復雜的微生物系統狀態。微生物的種類就是隨著污水種類的不同而產生很多的變化。并且細菌的形態有很多種,主要的細菌有球菌、桿菌、等等一些菌體。
工藝特點
1進水方式:A2/O在脫氮除磷處理中有著非常好的效果,在大型污水處理廠中為了能夠滿足水資源脫氮除磷的要求,一般MBR生物反應池會采用兩點進水的方式,即為將進水分配渠道設置在生物池前,將污水分配設置在渠道之后,將原水按照一定的比例通過兩套調節堰門進入到厭氧區和缺氧區前端。
2回流方式:在MBR污水處理過程中,將硝化液和污泥回流綜合運用,比傳統的污水處理工藝有著更高的回流效果。改污水處理廠采用的是三段回流的方式,也就是從膜池回流混合液至好氧區前端的*段,好氧區末端的硝化液回流至缺氧區前端的第二段和缺氧區末端的反硝化液回流至厭氧區前端的第三段。在回流過程中,大量的氧氣摻雜在混合液中,為了避免這些氧破壞缺氧區的環境造成難以充分進行反硝化反應,需要避免膜池硝化液直接回流,所以三段回流的方式具有良好的優勢,并且需要做好參數的確定。魯盛生物濾料的強度和各種化學性能均能滿足使用要求,與目前國內外普遍使用的球狀燒結陶粒濾料相比,堆積密度為其65.5%,表觀密度為其74.7—77.4%,空隙率可比其高出6—9個百分點,真實的比表面積為其4.5倍,經計算每m3魯盛生物濾料真實的總表面積可達到6.48×105㎡。從外觀上可以判定,魯盛生物濾料的表面比球狀燒結陶粒濾料表面的粗糙得多,并能觀察到濾料具有大孔結構。由此可見,魯盛生物濾料具有各種優良的物理性能。
無動力玻璃鋼一體化污水處理設備裝置分置式膜生物反應器通過泵對其加壓,混合液在壓力的作用下進行過濾,這樣大分子有機物將被膜過濾出來,再回流到生物反應器中進行降解,如此循環操作進一步地對有機污水中的有機物進行分解。分置式膜生物反應器具有穩定、容易操作、膜容易清洗等特征,是有機污水處理的有效方法之一,但是由于為了提高循環泵的壓力會消耗較高的動能。一體式膜生物反應器是將膜組件置于生物反應器中,再通過泵將過濾液抽出。
玻璃鋼無動力污水處理裝置