詳細介紹
根據吸附(效率高)和催化燃燒(節能)兩個基本原理設計,采用雙氣路連續工作,一個催化燃燒室,兩個吸附床交替使用。
合肥RCO催化燃燒設備活性炭吸附箱工廠
IC厭氧罐工作原理IC(internalcirculation)反應器是新一代厭氧反應器,廢水在反應器中自下而上流動,污染物被細菌吸附并降解,凈化過的水從反應器上部流出。按功能劃分,反應器由下而上共分為5個區:混合區、第1厭氧區、第2厭氧區、沉淀區和氣液分離區。IC厭氧罐技術優勢容積負荷高:厭氧罐反應器內污泥濃度高,微生物量大,進水有機負荷高;動力費用低,無混合攪拌設備,靠發酵過程中產生的沼氣的上升運動,使污泥床上部的污泥處于懸浮狀態,對下部的污泥層也有一定程度的攪動;污泥床不設載體,節省造價及避免因填料發生堵塞問題;出水穩定性好;啟動周期短:反應器內污泥活性高,生物增殖快,為反應器快速啟動提供有利條件;產氣量高:每公斤COD可產氣.58-.6m3,遠遠超過.35的理論值;沼氣利用價值高,反應器產生的生物氣純度高,CH47%~8%,CO22%~3%,其他有機物為1%~5%,可作燃料加以利用;節省投資和占地面積:IC反應器容積負荷率高出普通U:SB反應器3倍左右,其體積相當于普通反應器的1/41/3左右,大大降低了反應器的基建投資;IC反應器高徑比很大(一般為48),所以占地面積少。
先將有機廢氣用活性炭吸附,當快達到飽和時停止吸附,然后用熱氣流將有機物從活性炭上脫附下來,使活性炭再生;脫附下來的有機物已被濃縮(濃度較原來提高幾十倍),并送往催化燃燒室催化燃燒成二氧化碳及水蒸汽排出。
合肥RCO催化燃燒設備活性炭吸附箱工廠
與此同時,引入部分凈化后的氣體對蓄熱室3進行吹掃以備進行下一輪熱交換。該過程全部完成后切換進氣和出氣閥門,氣體由蓄熱室2進入,蓄熱室3排出,蓄熱室1進行吹掃;再接下來的循環則切換為由蓄熱室3進入,蓄熱室1排出,蓄熱室2進行吹掃,如此交替切換持續運行。此外,為了提高熱能利用率還可在RTO焚燒爐后設置換熱器加強余熱利用。關鍵部件RTO焚燒爐的穩定運行是建立在各個部件都能正常運轉的基礎上的,常見RTO焚燒爐的關鍵部件有如下幾個:3.1蓄熱體蓄熱體是RTO系統的熱量載體,它直接影響RTO的熱利用率,其主要技術指標如下:蓄熱能力:單位體積的蓄熱體所能存儲的熱量越大,蓄熱室的體積越小;換熱速度:材料的導熱系數可以反映熱量傳遞的快慢,導熱系數越大熱量傳遞越迅速;熱震穩定性:蓄熱體在高低溫之間連續多次地切換,在巨大溫差和短時間變化的情況下,極易發生變形以至于碎裂,堵塞氣流通道,影響蓄熱效果;抗腐蝕能力:蓄熱材料接觸的氣體介質多為具有強腐蝕性,抗腐蝕能力將影響RTO的使用壽命。2切換閥切換閥是RTO焚燒爐進行循環熱交換的關鍵部件,必須在規定的時間準確地進行切換,其穩定性和可靠性至關重要。因為廢氣中含有大量粉塵顆粒,切換閥的頻繁動作會造成磨損,積攢到一定程度會出現閥門密封不嚴、動作速度慢等問題,會極大地影響使用性能。3燒嘴燒嘴的主要目的是不讓氣體與燃料混合地過快,這樣會形成局部高溫;但也不能混合過慢導致燃料出現二次燃燒甚至燃燒不充分。為了確保燃料在低氧環境下燃燒,需要考慮到燃料與氣體間的擴散、與爐內廢氣的混合以及射流的角度及深度,這些參數應在設計之初根據實際的工藝需求準確計算,否則會直接影響RTO的焚燒效果。